Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: covidwho-2298255

RESUMO

BACKGROUND: Artificial intelligence (AI) programs that train on large datasets require powerful compute infrastructure consisting of several CPU cores and GPUs. JupyterLab provides an excellent framework for developing AI programs, but it needs to be hosted on such an infrastructure to enable faster training of AI programs using parallel computing. FINDINGS: An open-source, docker-based, and GPU-enabled JupyterLab infrastructure is developed that runs on the public compute infrastructure of Galaxy Europe consisting of thousands of CPU cores, many GPUs, and several petabytes of storage to rapidly prototype and develop end-to-end AI projects. Using a JupyterLab notebook, long-running AI model training programs can also be executed remotely to create trained models, represented in open neural network exchange (ONNX) format, and other output datasets in Galaxy. Other features include Git integration for version control, the option of creating and executing pipelines of notebooks, and multiple dashboards and packages for monitoring compute resources and visualization, respectively. CONCLUSIONS: These features make JupyterLab in Galaxy Europe highly suitable for creating and managing AI projects. A recent scientific publication that predicts infected regions in COVID-19 computed tomography scan images is reproduced using various features of JupyterLab on Galaxy Europe. In addition, ColabFold, a faster implementation of AlphaFold2, is accessed in JupyterLab to predict the 3-dimensional structure of protein sequences. JupyterLab is accessible in 2 ways-one as an interactive Galaxy tool and the other by running the underlying Docker container. In both ways, long-running training can be executed on Galaxy's compute infrastructure. Scripts to create the Docker container are available under MIT license at https://github.com/usegalaxy-eu/gpu-jupyterlab-docker.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , Software , Redes Neurais de Computação , Sequência de Aminoácidos
2.
PLoS Comput Biol ; 19(1): e1010752, 2023 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2262899

RESUMO

There is an ongoing explosion of scientific datasets being generated, brought on by recent technological advances in many areas of the natural sciences. As a result, the life sciences have become increasingly computational in nature, and bioinformatics has taken on a central role in research studies. However, basic computational skills, data analysis, and stewardship are still rarely taught in life science educational programs, resulting in a skills gap in many of the researchers tasked with analysing these big datasets. In order to address this skills gap and empower researchers to perform their own data analyses, the Galaxy Training Network (GTN) has previously developed the Galaxy Training Platform (https://training.galaxyproject.org), an open access, community-driven framework for the collection of FAIR (Findable, Accessible, Interoperable, Reusable) training materials for data analysis utilizing the user-friendly Galaxy framework as its primary data analysis platform. Since its inception, this training platform has thrived, with the number of tutorials and contributors growing rapidly, and the range of topics extending beyond life sciences to include topics such as climatology, cheminformatics, and machine learning. While initially aimed at supporting researchers directly, the GTN framework has proven to be an invaluable resource for educators as well. We have focused our efforts in recent years on adding increased support for this growing community of instructors. New features have been added to facilitate the use of the materials in a classroom setting, simplifying the contribution flow for new materials, and have added a set of train-the-trainer lessons. Here, we present the latest developments in the GTN project, aimed at facilitating the use of the Galaxy Training materials by educators, and its usage in different learning environments.


Assuntos
Biologia Computacional , Software , Humanos , Biologia Computacional/métodos , Análise de Dados , Pesquisadores
3.
Viruses ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: covidwho-2066560

RESUMO

The Coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in a major health crisis worldwide with its continuously emerging new strains, resulting in new viral variants that drive "waves" of infection. PCR or antigen detection assays have been routinely used to detect clinical infections; however, the emergence of these newer strains has presented challenges in detection. One of the alternatives has been to detect and characterize variant-specific peptide sequences from viral proteins using mass spectrometry (MS)-based methods. MS methods can potentially help in both diagnostics and vaccine development by understanding the dynamic changes in the viral proteome associated with specific strains and infection waves. In this study, we developed an accessible, flexible, and shareable bioinformatics workflow that was implemented in the Galaxy Platform to detect variant-specific peptide sequences from MS data derived from the clinical samples. We demonstrated the utility of the workflow by characterizing published clinical data from across the world during various pandemic waves. Our analysis identified six SARS-CoV-2 variant-specific peptides suitable for confident detection by MS in commonly collected clinical samples.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Proteoma , Peptídeos , Proteínas Virais/genética
4.
J Cheminform ; 14(1): 22, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1785168

RESUMO

We present several workflows for protein-ligand docking and free energy calculation for use in the workflow management system Galaxy. The workflows are composed of several widely used open-source tools, including rDock and GROMACS, and can be executed on public infrastructure using either Galaxy's graphical interface or the command line. We demonstrate the utility of the workflows by running a high-throughput virtual screening of around 50000 compounds against the SARS-CoV-2 main protease, a system which has been the subject of intense study in the last year.

5.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1758789

RESUMO

Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , COVID-19/genética , Humanos , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
7.
Bioinformatics ; 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1258751

RESUMO

SUMMARY: Many aspects of the global response to the COVID-19 pandemic are enabled by the fast and open publication of SARS-CoV-2 genetic sequence data. The European Nucleotide Archive (ENA) is the European recommended open repository for genetic sequences. In this work, we present a tool for submitting raw sequencing reads of SARS-CoV-2 to ENA. The tool features a single-step submission process, a graphical user interface, tabular-formatted metadata and the possibility to remove human reads prior to submission. A Galaxy wrap of the tool allows users with little or no bioinformatic knowledge to do bulk sequencing read submissions. The tool is also packed in a Docker container to ease deployment. AVAILABILITY: CLI ENA upload tool is available at github.com/usegalaxy-eu/ena-upload-cli (DOI 10.5281/zenodo.4537621); Galaxy ENA upload tool at toolshed.g2.bx.psu.edu/view/iuc/ena_upload/382518f24d6d and https://github.com/galaxyproject/tools-iuc/tree/master/tools/ena_upload (development) and; ENA upload Galaxy container at github.com/ELIXIR-Belgium/ena-upload-container (DOI 10.5281/zenodo.4730785).

8.
PLoS Comput Biol ; 17(5): e1008923, 2021 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1226887

RESUMO

The COVID-19 pandemic is shifting teaching to an online setting all over the world. The Galaxy framework facilitates the online learning process and makes it accessible by providing a library of high-quality community-curated training materials, enabling easy access to data and tools, and facilitates sharing achievements and progress between students and instructors. By combining Galaxy with robust communication channels, effective instruction can be designed inclusively, regardless of the students' environments.


Assuntos
COVID-19/epidemiologia , Instrução por Computador , Educação a Distância/organização & administração , COVID-19/virologia , Biologia Computacional , Humanos , Disseminação de Informação , Pandemias , SARS-CoV-2/isolamento & purificação
9.
PLoS Comput Biol ; 17(5): e1008922, 2021 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1226886

RESUMO

The Coronavirus Disease 2019 (COVID-19) outbreaks have caused universities all across the globe to close their campuses and forced them to initiate online teaching. This article reviews the pedagogical foundations for developing effective distance education practices, starting from the assumption that promoting autonomous thinking is an essential element to guarantee full citizenship in a democracy and for moral decision-making in situations of rapid change, which has become a pressing need in the context of a pandemic. In addition, the main obstacles related to this new context are identified, and solutions are proposed according to the existing bibliography in learning sciences.


Assuntos
COVID-19/epidemiologia , Biologia Computacional , Educação a Distância/organização & administração , Quarentena , Ensino , COVID-19/virologia , Tomada de Decisões , Humanos , Pandemias , SARS-CoV-2/isolamento & purificação
10.
Clin Proteomics ; 18(1): 15, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1223761

RESUMO

BACKGROUND: The Coronavirus Disease 2019 (COVID-19) global pandemic has had a profound, lasting impact on the world's population. A key aspect to providing care for those with COVID-19 and checking its further spread is early and accurate diagnosis of infection, which has been generally done via methods for amplifying and detecting viral RNA molecules. Detection and quantitation of peptides using targeted mass spectrometry-based strategies has been proposed as an alternative diagnostic tool due to direct detection of molecular indicators from non-invasively collected samples as well as the potential for high-throughput analysis in a clinical setting; many studies have revealed the presence of viral peptides within easily accessed patient samples. However, evidence suggests that some viral peptides could serve as better indicators of COVID-19 infection status than others, due to potential misidentification of peptides derived from human host proteins, poor spectral quality, high limits of detection etc. METHODS: In this study we have compiled a list of 636 peptides identified from Sudden Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples, including from in vitro and clinical sources. These datasets were rigorously analyzed using automated, Galaxy-based workflows containing tools such as PepQuery, BLAST-P, and the Multi-omic Visualization Platform as well as the open-source tools MetaTryp and Proteomics Data Viewer (PDV). RESULTS: Using PepQuery for confirming peptide spectrum matches, we were able to narrow down the 639-peptide possibilities to 87 peptides that were most robustly detected and specific to the SARS-CoV-2 virus. The specificity of these sequences to coronavirus taxa was confirmed using Unipept and BLAST-P. Through stringent p-value cutoff combined with manual verification of peptide spectrum match quality, 4 peptides derived from the nucleocapsid phosphoprotein and membrane protein were found to be most robustly detected across all cell culture and clinical samples, including those collected non-invasively. CONCLUSION: We propose that these peptides would be of the most value for clinical proteomics applications seeking to detect COVID-19 from patient samples. We also contend that samples harvested from the upper respiratory tract and oral cavity have the highest potential for diagnosis of SARS-CoV-2 infection from easily collected patient samples using mass spectrometry-based proteomics assays.

11.
PLoS Pathog ; 16(8): e1008643, 2020 08.
Artigo em Inglês | MEDLINE | ID: covidwho-712942

RESUMO

The current state of much of the Wuhan pneumonia virus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) research shows a regrettable lack of data sharing and considerable analytical obfuscation. This impedes global research cooperation, which is essential for tackling public health emergencies and requires unimpeded access to data, analysis tools, and computational infrastructure. Here, we show that community efforts in developing open analytical software tools over the past 10 years, combined with national investments into scientific computational infrastructure, can overcome these deficiencies and provide an accessible platform for tackling global health emergencies in an open and transparent manner. Specifically, we use all SARS-CoV-2 genomic data available in the public domain so far to (1) underscore the importance of access to raw data and (2) demonstrate that existing community efforts in curation and deployment of biomedical software can reliably support rapid, reproducible research during global health crises. All our analyses are fully documented at https://github.com/galaxyproject/SARS-CoV-2.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Saúde Pública , Síndrome Respiratória Aguda Grave/virologia , COVID-19 , Análise de Dados , Humanos , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA